3.106 \(\int \frac {a+b \csc ^{-1}(c x)}{x (d+e x^2)^2} \, dx\)

Optimal. Leaf size=566 \[ -\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 d^2}-\frac {e \left (a+b \csc ^{-1}(c x)\right )}{2 d^2 \left (\frac {d}{x^2}+e\right )}+\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b d^2}+\frac {i b \text {Li}_2\left (-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 d^2}+\frac {i b \text {Li}_2\left (\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 d^2}+\frac {i b \text {Li}_2\left (-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 d^2}+\frac {i b \text {Li}_2\left (\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 d^2}+\frac {b \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} x \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{2 d^2 \sqrt {c^2 d+e}} \]

[Out]

-1/2*e*(a+b*arccsc(c*x))/d^2/(e+d/x^2)+1/2*I*(a+b*arccsc(c*x))^2/b/d^2-1/2*(a+b*arccsc(c*x))*ln(1-I*c*(I/c/x+(
1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/d^2-1/2*(a+b*arccsc(c*x))*ln(1+I*c*(I/c/x+(1-1/c^2/x
^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/d^2-1/2*(a+b*arccsc(c*x))*ln(1-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2)
)*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/d^2-1/2*(a+b*arccsc(c*x))*ln(1+I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1
/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/d^2+1/2*I*b*polylog(2,-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2
*d+e)^(1/2)))/d^2+1/2*I*b*polylog(2,I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/d^2+
1/2*I*b*polylog(2,-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/d^2+1/2*I*b*polylog(2
,I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/d^2+1/2*b*arctan((c^2*d+e)^(1/2)/c/x/e^
(1/2)/(1-1/c^2/x^2)^(1/2))*e^(1/2)/d^2/(c^2*d+e)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 1.16, antiderivative size = 566, normalized size of antiderivative = 1.00, number of steps used = 24, number of rules used = 10, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {5241, 4733, 4729, 377, 205, 4741, 4519, 2190, 2279, 2391} \[ \frac {i b \text {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^2}+\frac {i b \text {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^2}+\frac {i b \text {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 d^2}+\frac {i b \text {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 d^2}-\frac {e \left (a+b \csc ^{-1}(c x)\right )}{2 d^2 \left (\frac {d}{x^2}+e\right )}+\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b d^2}+\frac {b \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} x \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{2 d^2 \sqrt {c^2 d+e}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCsc[c*x])/(x*(d + e*x^2)^2),x]

[Out]

-(e*(a + b*ArcCsc[c*x]))/(2*d^2*(e + d/x^2)) + ((I/2)*(a + b*ArcCsc[c*x])^2)/(b*d^2) + (b*Sqrt[e]*ArcTan[Sqrt[
c^2*d + e]/(c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)])/(2*d^2*Sqrt[c^2*d + e]) - ((a + b*ArcCsc[c*x])*Log[1 - (I*c*S
qrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(2*d^2) - ((a + b*ArcCsc[c*x])*Log[1 + (I*c*Sqrt[-d]*
E^(I*ArcCsc[c*x]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(2*d^2) - ((a + b*ArcCsc[c*x])*Log[1 - (I*c*Sqrt[-d]*E^(I*Arc
Csc[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*d^2) - ((a + b*ArcCsc[c*x])*Log[1 + (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]
))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*d^2) + ((I/2)*b*PolyLog[2, ((-I)*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] -
Sqrt[c^2*d + e])])/d^2 + ((I/2)*b*PolyLog[2, (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] - Sqrt[c^2*d + e])])/d^
2 + ((I/2)*b*PolyLog[2, ((-I)*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/d^2 + ((I/2)*b*PolyL
og[2, (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/d^2

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4519

Int[(Cos[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
-Simp[(I*(e + f*x)^(m + 1))/(b*f*(m + 1)), x] + (Int[((e + f*x)^m*E^(I*(c + d*x)))/(a - Rt[a^2 - b^2, 2] - I*b
*E^(I*(c + d*x))), x] + Int[((e + f*x)^m*E^(I*(c + d*x)))/(a + Rt[a^2 - b^2, 2] - I*b*E^(I*(c + d*x))), x]) /;
 FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && PosQ[a^2 - b^2]

Rule 4729

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^(p + 1
)*(a + b*ArcSin[c*x]))/(2*e*(p + 1)), x] - Dist[(b*c)/(2*e*(p + 1)), Int[(d + e*x^2)^(p + 1)/Sqrt[1 - c^2*x^2]
, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[c^2*d + e, 0] && NeQ[p, -1]

Rule 4733

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[
ExpandIntegrand[(a + b*ArcSin[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^
2*d + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]

Rule 4741

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Subst[Int[((a + b*x)^n*Cos[x])/
(c*d + e*Sin[x]), x], x, ArcSin[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]

Rule 5241

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int[
((e + d*x^2)^p*(a + b*ArcSin[x/c])^n)/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n
, 0] && IntegerQ[m] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {a+b \csc ^{-1}(c x)}{x \left (d+e x^2\right )^2} \, dx &=-\operatorname {Subst}\left (\int \frac {x^3 \left (a+b \sin ^{-1}\left (\frac {x}{c}\right )\right )}{\left (e+d x^2\right )^2} \, dx,x,\frac {1}{x}\right )\\ &=-\operatorname {Subst}\left (\int \left (-\frac {e x \left (a+b \sin ^{-1}\left (\frac {x}{c}\right )\right )}{d \left (e+d x^2\right )^2}+\frac {x \left (a+b \sin ^{-1}\left (\frac {x}{c}\right )\right )}{d \left (e+d x^2\right )}\right ) \, dx,x,\frac {1}{x}\right )\\ &=-\frac {\operatorname {Subst}\left (\int \frac {x \left (a+b \sin ^{-1}\left (\frac {x}{c}\right )\right )}{e+d x^2} \, dx,x,\frac {1}{x}\right )}{d}+\frac {e \operatorname {Subst}\left (\int \frac {x \left (a+b \sin ^{-1}\left (\frac {x}{c}\right )\right )}{\left (e+d x^2\right )^2} \, dx,x,\frac {1}{x}\right )}{d}\\ &=-\frac {e \left (a+b \csc ^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}-\frac {\operatorname {Subst}\left (\int \left (-\frac {\sqrt {-d} \left (a+b \sin ^{-1}\left (\frac {x}{c}\right )\right )}{2 d \left (\sqrt {e}-\sqrt {-d} x\right )}+\frac {\sqrt {-d} \left (a+b \sin ^{-1}\left (\frac {x}{c}\right )\right )}{2 d \left (\sqrt {e}+\sqrt {-d} x\right )}\right ) \, dx,x,\frac {1}{x}\right )}{d}+\frac {(b e) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{c^2}} \left (e+d x^2\right )} \, dx,x,\frac {1}{x}\right )}{2 c d^2}\\ &=-\frac {e \left (a+b \csc ^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}+\frac {\operatorname {Subst}\left (\int \frac {a+b \sin ^{-1}\left (\frac {x}{c}\right )}{\sqrt {e}-\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 (-d)^{3/2}}-\frac {\operatorname {Subst}\left (\int \frac {a+b \sin ^{-1}\left (\frac {x}{c}\right )}{\sqrt {e}+\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 (-d)^{3/2}}+\frac {(b e) \operatorname {Subst}\left (\int \frac {1}{e-\left (-d-\frac {e}{c^2}\right ) x^2} \, dx,x,\frac {1}{\sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 c d^2}\\ &=-\frac {e \left (a+b \csc ^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}+\frac {b \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 d^2 \sqrt {c^2 d+e}}+\frac {\operatorname {Subst}\left (\int \frac {(a+b x) \cos (x)}{\frac {\sqrt {e}}{c}-\sqrt {-d} \sin (x)} \, dx,x,\csc ^{-1}(c x)\right )}{2 (-d)^{3/2}}-\frac {\operatorname {Subst}\left (\int \frac {(a+b x) \cos (x)}{\frac {\sqrt {e}}{c}+\sqrt {-d} \sin (x)} \, dx,x,\csc ^{-1}(c x)\right )}{2 (-d)^{3/2}}\\ &=-\frac {e \left (a+b \csc ^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}+\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b d^2}+\frac {b \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 d^2 \sqrt {c^2 d+e}}-\frac {\operatorname {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}-i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 (-d)^{3/2}}-\frac {\operatorname {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}-i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 (-d)^{3/2}}+\frac {\operatorname {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}+i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 (-d)^{3/2}}+\frac {\operatorname {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}+i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 (-d)^{3/2}}\\ &=-\frac {e \left (a+b \csc ^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}+\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b d^2}+\frac {b \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 d^2 \sqrt {c^2 d+e}}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d^2}+\frac {b \operatorname {Subst}\left (\int \log \left (1-\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 d^2}+\frac {b \operatorname {Subst}\left (\int \log \left (1+\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 d^2}+\frac {b \operatorname {Subst}\left (\int \log \left (1-\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 d^2}+\frac {b \operatorname {Subst}\left (\int \log \left (1+\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 d^2}\\ &=-\frac {e \left (a+b \csc ^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}+\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b d^2}+\frac {b \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 d^2 \sqrt {c^2 d+e}}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {(i b) \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 d^2}-\frac {(i b) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 d^2}-\frac {(i b) \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 d^2}-\frac {(i b) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 d^2}\\ &=-\frac {e \left (a+b \csc ^{-1}(c x)\right )}{2 d^2 \left (e+\frac {d}{x^2}\right )}+\frac {i \left (a+b \csc ^{-1}(c x)\right )^2}{2 b d^2}+\frac {b \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 d^2 \sqrt {c^2 d+e}}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d^2}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d^2}+\frac {i b \text {Li}_2\left (-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^2}+\frac {i b \text {Li}_2\left (\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d^2}+\frac {i b \text {Li}_2\left (-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d^2}+\frac {i b \text {Li}_2\left (\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]  time = 43.45, size = 0, normalized size = 0.00 \[ \int \frac {a+b \csc ^{-1}(c x)}{x \left (d+e x^2\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(a + b*ArcCsc[c*x])/(x*(d + e*x^2)^2),x]

[Out]

Integrate[(a + b*ArcCsc[c*x])/(x*(d + e*x^2)^2), x]

________________________________________________________________________________________

fricas [F]  time = 0.63, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b \operatorname {arccsc}\left (c x\right ) + a}{e^{2} x^{5} + 2 \, d e x^{3} + d^{2} x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsc(c*x))/x/(e*x^2+d)^2,x, algorithm="fricas")

[Out]

integral((b*arccsc(c*x) + a)/(e^2*x^5 + 2*d*e*x^3 + d^2*x), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsc(c*x))/x/(e*x^2+d)^2,x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:Warning, integrat
ion of abs or sign assumes constant sign by intervals (correct if the argument is real):Check [abs(x)]sym2poly
/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [C]  time = 2.61, size = 3036, normalized size = 5.36 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsc(c*x))/x/(e*x^2+d)^2,x)

[Out]

-1/2*a/d^2*ln(c^2*e*x^2+c^2*d)+a/d^2*ln(c*x)+1/8*I*b*c^2*(e*(c^2*d+e))^(1/2)/d/e/(c^2*d+e)*polylog(2,c^2*d*(I/
c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e))-3/2*I*b/c^2*e*polylog(2,c^2*d*(I/c/x+(1-1/c^2/x^
2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))/d^3/(c^2*d+e)*(e*(c^2*d+e))^(1/2)-2*I*b/c^4*e^2*arccsc(c*x)^2/d
^4/(c^2*d+e)*(e*(c^2*d+e))^(1/2)-3*I*b/c^2*arccsc(c*x)^2/d^3/(c^2*d+e)*(e*(c^2*d+e))^(1/2)*e+3*b/c^2*e*ln(1-c^
2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))*arccsc(c*x)/d^3/(c^2*d+e)*(e*(c^2*d+e))^(
1/2)-1/4*b*c^2*(e*(c^2*d+e))^(1/2)/d/e/(c^2*d+e)*arccsc(c*x)*ln(1-c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d+2
*(e*(c^2*d+e))^(1/2)+2*e))-1/8*I*b*c^2*polylog(2,c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1
/2)+2*e))/d/e/(c^2*d+e)*(e*(c^2*d+e))^(1/2)+1/2*a*c^2/d/(c^2*e*x^2+c^2*d)+2*b/c^4*e^3*ln(1-c^2*d*(I/c/x+(1-1/c
^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))*arccsc(c*x)/d^4/(c^2*d+e)-2*I*b/c^2*e^2*polylog(2,c^2*d*(I
/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))/d^3/(c^2*d+e)-I*b/c^4*e^3*polylog(2,c^2*d*(I/c/
x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))/d^4/(c^2*d+e)-2*I*b/c^4*e^3*arccsc(c*x)^2/d^4/(c^2
*d+e)-4*I*b/c^2*arccsc(c*x)^2/d^3/(c^2*d+e)*e^2+2*I*b/c^4*arccsc(c*x)^2*e/d^4*(e*(c^2*d+e))^(1/2)-1/2*b*c^2*x^
2*arccsc(c*x)*e/(c^2*e*x^2+c^2*d)/d^2+1/4*I*b*polylog(2,c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d
+e))^(1/2)+2*e))/d^2-1/2*b*ln(1-c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))*arccsc(
c*x)/d^2+I*b*arccsc(c*x)^2/d^2+1/2*I*b/d^2*sum((_R1^2*c^2*d-2*c^2*d-4*e)/(_R1^2*c^2*d-c^2*d-2*e)*(I*arccsc(c*x
)*ln((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(-
2*c^2*d-4*e)*_Z^2+c^2*d))+I*b/c^4*polylog(2,c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2
*e))*e/d^4*(e*(c^2*d+e))^(1/2)-2*b/c^4*ln(1-c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2
*e))*arccsc(c*x)*e/d^4*(e*(c^2*d+e))^(1/2)+4*b/c^2*e^2*ln(1-c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c
^2*d+e))^(1/2)+2*e))*arccsc(c*x)/d^3/(c^2*d+e)+3/2*b*ln(1-c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2
*d+e))^(1/2)+2*e))*arccsc(c*x)/d^2/(c^2*d+e)*(e*(c^2*d+e))^(1/2)+5/2*b*ln(1-c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^
2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))*arccsc(c*x)/d^2*e/(c^2*d+e)-1/2*b*(e*(c^2*d+e))^(1/2)/d^2/(c^2*d+e)*arccs
c(c*x)*ln(1-c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e))+1/2*I*b/c^2*polylog(2,c^2*d
*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))/d^3*(e*(c^2*d+e))^(1/2)-1/4*I*b*c^2*polylog(
2,c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))/d/(c^2*d+e)+2*I*b/c^2*arccsc(c*x)^2*e
/d^3+2*I*b/c^4*arccsc(c*x)^2*e^2/d^4-1/2*I*b*c^2*arccsc(c*x)^2/d/(c^2*d+e)-5/4*I*b*polylog(2,c^2*d*(I/c/x+(1-1
/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))/d^2*e/(c^2*d+e)-I*b*(e*(c^2*d+e))^(1/2)/d^2/(c^2*d+e)*ar
ccsc(c*x)^2-3/4*I*b*polylog(2,c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))/d^2/(c^2*
d+e)*(e*(c^2*d+e))^(1/2)+1/4*I*b*(e*(c^2*d+e))^(1/2)/d^2/(c^2*d+e)*polylog(2,c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))
^2/(c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e))-1/2*I*b*(e*(c^2*d+e))^(1/2)/d^2/(c^2*d+e)*arctanh(1/4*(2*c^2*d*(I/c/x+(1
-1/c^2/x^2)^(1/2))^2-2*c^2*d-4*e)/(c^2*d*e+e^2)^(1/2))-5/2*I*b*arccsc(c*x)^2/d^2/(c^2*d+e)*e-2*b/c^4*ln(1-c^2*
d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))*arccsc(c*x)*e^2/d^4-b/c^2*ln(1-c^2*d*(I/c/x
+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))*arccsc(c*x)/d^3*(e*(c^2*d+e))^(1/2)+I*b/c^2*polylog
(2,c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))/d^3*e+I*b/c^2*arccsc(c*x)^2/d^3*(e*(
c^2*d+e))^(1/2)+1/2*b*c^2*ln(1-c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))*arccsc(c
*x)/d/(c^2*d+e)+I*b/c^4*polylog(2,c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))*e^2/d
^4-2*b/c^2*ln(1-c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))*arccsc(c*x)*e/d^3+2*b/c
^4*e^2*ln(1-c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))*arccsc(c*x)/d^4/(c^2*d+e)*(
e*(c^2*d+e))^(1/2)+1/4*b*c^2*ln(1-c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e))*arccs
c(c*x)/d/e/(c^2*d+e)*(e*(c^2*d+e))^(1/2)-I*b/c^4*e^2*polylog(2,c^2*d*(I/c/x+(1-1/c^2/x^2)^(1/2))^2/(c^2*d-2*(e
*(c^2*d+e))^(1/2)+2*e))/d^4/(c^2*d+e)*(e*(c^2*d+e))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {1}{2} \, a {\left (\frac {1}{d e x^{2} + d^{2}} - \frac {\log \left (e x^{2} + d\right )}{d^{2}} + \frac {2 \, \log \relax (x)}{d^{2}}\right )} + b \int \frac {\arctan \left (1, \sqrt {c x + 1} \sqrt {c x - 1}\right )}{e^{2} x^{5} + 2 \, d e x^{3} + d^{2} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsc(c*x))/x/(e*x^2+d)^2,x, algorithm="maxima")

[Out]

1/2*a*(1/(d*e*x^2 + d^2) - log(e*x^2 + d)/d^2 + 2*log(x)/d^2) + b*integrate(arctan2(1, sqrt(c*x + 1)*sqrt(c*x
- 1))/(e^2*x^5 + 2*d*e*x^3 + d^2*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )}{x\,{\left (e\,x^2+d\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(1/(c*x)))/(x*(d + e*x^2)^2),x)

[Out]

int((a + b*asin(1/(c*x)))/(x*(d + e*x^2)^2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsc(c*x))/x/(e*x**2+d)**2,x)

[Out]

Timed out

________________________________________________________________________________________